How researchers are teaching AI to learn like a child

How researchers are teaching AI to learn like a child

November 26, 2019 21 By Stanley Isaacs


You’ve probably heard of machine learning. That’s when a computer learns everything it needs to know from a giant dataset, using trial and error. But that’s not what babies do. They aren’t a clean slate upon entering the world. Babies have innate knowledge that helps them to voraciously learn and rapidly adapt. There are just some things you can’t learn from trial and error. But many computer scientists argue that most human skills are learned and AI could learn them too, without the need for pre-loaded rules. Still, a growing number of researchers are attempting to encode AI with a bit of common sense. The current craze in AI are neural nets, collections of simple computing elements, loosely modeled on neurons in the brain, that adjust their connections as they encounter more data. They’ve produced incredible achievements in the past few years, from facial recognition to beating humans at poker and go. But neural nets require thousands of training examples to reliably form associations. And even then, they can produce some embarrassing blunders. Compare this to a child who can see an image just once and after that instantly recognize it in other contexts. Some AI’s can play classic Atari games with super human skill, but when you remove all the aliens but one, the player inexplicably becomes a sitting duck. Different labs are categorizing human instincts and then trying to encode them into AI. These systems sit somewhere between pure machine learning and completely programmed. One team developed an AI called They’ve embedded the rule that: such a thing as objects and relationships between those objects exist. This is like a baby’s innate parsing of the world into objects. In tests, once the AI learns the specific properties and relationships, it is able to predict the behavior of falling strings and bouncing balls in a box. Another group’s “neural physics engine” beat less structured neural nets at predicting ball collisions in containers. And a lab created an AI which has an embedded rule to treat letters as objects and separate them from their background. This allowed it to solved CAPTCHAs better than other neural nets that were trained with 50,000 times more data. We’re far away from AIs that can truly thinks like humans, But with these latest attempts to reproduce common sense artificially, researchers believe they will get closer to creating robots that can fully interact with the world the way we do. Machines that start like a baby and learn like a child.